READ THE INSTRUCTIONS CAREFULLY!!!!! Continued Fractions and the GWK DistributionExperimental Studies Essay Example

  • Category:
    Logic & Programming
  • Document type:
    Assignment
  • Level:
    Undergraduate
  • Page:
    1
  • Words:
    380

Course: COMP1730

Assignment Number: One

File Name: cfe.py

Lab Group:

I declare that the material I am submitting in this file is entirely

my own work. I have not collaborated with anyone to produce it, nor

have I copied it from work produced by someone else.

The module docstring explaining its purpose and usage,

This is the «example» module.

The example module supplies one function, factorial(). For example,

>>> factorial(5)

def factorial(n):

«»»Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.

Else return a long.

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> [factorial(long(n)) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> factorial(30)

265252859812191058636308480000000L

>>> factorial(30L)

265252859812191058636308480000000L

>>> factorial(-1)

Traceback (most recent call last):

ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:

>>> factorial(30.1)

Traceback (most recent call last):

ValueError: n must be exact integer

>>> factorial(30.0)

265252859812191058636308480000000L

It must also not be ridiculously large:

>>> factorial(1e100)

Traceback (most recent call last):

OverflowError: n too large

import math

if not n >= 0:

raise ValueError(«n must be >= 0»)

if math.floor(n) != n:

raise ValueError(«n must be exact integer»)

if n+1 == n: # catch a value like 1e300

raise OverflowError(«n too large»)

result = 1

factor = 2

while factor <= n:

result *= factor

factor += 1

return result

if __name__ == «__main__»:

import doctest

doctest.testmod()

integer.def universal_distro(L=10000):

Import random

y= random.random()

h = list()

r= dict()

p = dict()

L= len(o)

while L < 10000:

for y in range[0,1]:

w = number2cfe(y,L=15)

If w[n] not in g:

for e in w:

if e == w[n]:

count += 1

g.append(w[n])

import fractions 1

y = fractions. Fraction (1, 3) 2

Fraction (1, 3)

Fraction (2, 3)

Fraction (6, 4) 4

Fraction (3, 2)

Fraction (0, 0) 5

The table below is a list representing CFE, we are going to use python program to compute frequencies of CFE coefficients.

Computing CFE for a given number say 7

p(k)READ THE INSTRUCTIONS CAREFULLY!!!!! Continued Fractions and the GWK DistributionExperimental Studies ↔ GWK theorem

p(k)=35.5558

References

Guido van, R. & Jelke de, B. (2001). Interactively Testing Remote Servers Using the Python Programming Language. Amsterdam: Longman Publishers pp. 283-303.